[1]Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Biochem Biophys Res Commun, 2006, 351(3):602-611.[2]Chiò A, Calvo A, Moglia C,et al. Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations[J]. Arch Neurol, 2010, 67(8):1002-1009.[3]Borroni B, Bonvicini C, Alberici A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease[J]. Hum Mutat, 2009, 30(11):E974-E983.[4]Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia[J]. Lancet Neurol, 2010, 9(10):995- 1007.[5]Benussi L, Ghidoni R, Pegoiani E, et al. Progranulin Leu- 271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide[J]. Neurobiol Dis, 2009,33(3):379-385.[6]Kelley BJ, Haidar W, Boeve BF, et al. Prominent phenotypic variability associated with mutations in progranulin[J]. Neurobiol Aging, 2009, 30(5):739-751.[7]Zhang YJ, Xu YF, Dickey CA, et al. Progranulin mediates caspasedependent cleavage of TAR DNA binding protein-43[J]. J Neurosci, 2007, 27(39):10530-10534.[8]Custer SK, Neumann M, Lu H, et al. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone[J]. Hum Mol Genet, 2010, 19(9):1741-1755.[9]Gijselinck I, Engelborghs S, Maes G, et al. Identification of 2 loci at chromosomes 9 and 14 in a multiplex family with frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Arch Neurol, 2010, 67(5):606-616.[10]Kwiatkowski TJ, Bosco DA. LeClerc L, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis[J]. Science,2009, 323(5918):1205-1208.[11]Rademaker R, Stewart H, Dejesus-Hernandez M, et al. FUS gene mutations in Amyotrophic Lateral Sclerosis[J]. Muscle Nerve, 2010, 42(2):170-176.[12]Blair IP, Williams KL, Warraich ST, et al. FUS mutations in Amyotrophic Lateral Sclerosis: clinical, pathological, neurophysiological and genetic analysis[J]. J Neurol Neurosurg Psychiatry, 2010, 81(6):639-645.[13]Strong MJ. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS)[J]. J Neurol Sci, 2010, 288(1-2):1-12.[14]Ou SHI, Wu F, Harrich D, et al. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs[J]. J Virol, 1995, 69(6):3584-3596.[15]Makeyev AV, Liebhaber SA. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms[J]. RNA, 2002, 8(3):265-278.[16]Ayala YM, Pagani F, Baralle FE. TDP-43 depletion rescues aberrant CFTR exon 9 skipping[J]. FEBS Lett, 2006, 580(5):1339-1344.[17]Strong MJ, Volkening K, Hammond R, et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein[J]. Mol Cell Neurosci, 2007, 35(2):320-327.[18]Volkening K, Leystra-Lantz C, Yang W, et al. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS)[J]. Brain Res, 2009, 1305(11):168-182.[19]Colombrit C, Zennaro E, Fallini C, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult[J]. J Neurochem, 2009, 111(4):1051-1061.[20]Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J]. Nature, 454(7200):126-130.[21]Lagier-Tourenne C, Polymenidou M, Cleveland DW, et al. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration[J]. Hum Mol Genet, 2010, 19(R1):R46-R64.[22]Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6[J]. Science, 2009, 323(5918):1208-1211.[23]Tan AY, Manley JL. TLS inhibits RNA polymerase Ⅲ transcription[J]. Mol Cell Biol, 2010, 30(1):186-196.[24]Sato S, Idogawa M, Honda K,et al. Beta-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing[J]. Gastroenterology, 2005, 129(4):1225-1236.[25]Camats M, Guil S, Kokolo M, et al. P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras[J]. PLoS One, 2008, 3(8):e2926.[26]Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43[J]. Cell, 2009, 136(6):1001-1004.[27]Van Blitterswijk M, Landers JE. RNA processing pathways in amyotrophic lateral sclerosis[J]. Neurogenetics, 2010, 11(3):275-290.[28]Bosco DA, Lemay N, Ko HK, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules[J]. Hum Mol Genet, 2010, 19(21):4160-4175.[29]Gregory RI, Yan K, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004, 432(7014):235-240.[30]Arai T, Hasegawa M, Nonoka T, et al. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy[J]. Neuropathology, 2010, 30(2):170-181.[31]Mackenzie IR, Bigio EH, Ince PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations[J]. Ann Neurol, 2007, 61(5):427-434.[32]Giordana MT, Piccinini M, Grifoni S, et al. TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis[J]. Brain Pathol, 2010, 20(2):351-360.[33]Neumann M, Kwong LK, Lee EB, et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies[J]. Acta Neuropathol, 2009, 117(2):137-149.[34]King A, Maekawa S, Bodi I, et al. Ubiquitinated, p62 immunopositive cerebellar cortical neuronal inclusions are evident across the spectrum of TDP-43 proteinopathies but are only rarely additionally immunopositive for phosphorylation-dependent TDP-43[J].Neuropathology, 2010, 31(3):239-249.[35]Munoz DG, Neumann M, Kusaka H. FUS pathology in basophilic inclusion body disease[J]. Acta Neuropathol, 2009, 118(5):617-627.[36]Suzuki N, Aoki M, Warita H, et al. FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusion[J]. J Hum Genet, 2010, 55(4):252-254.[37]Neumann M, Rademakers R, Roeber S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathsology[J]. Brain, 2009, 132(Pt 11):2922-2931. |