[1] |
Xu Y, Wang L, He J, et al.Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9):948-959. DOI:10.1001/jama.2013.168118.
|
[2] |
Rask-Madsen C, King GL.Vascular complications of diabetes: mechanisms of injury and protective factors[J]. Cell Metab, 2013, 17(1):20-33. DOI:10.1016/j.cmet.2012.11.012.
|
[3] |
Brownlee M.Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865):813-820. DOI:10.1038/414813a.
|
[4] |
Zhu Y, Xu G, Patel A, et al.Cloning, expression, and initial characterization of a novel cytokine-like gene family[J]. Genomics, 2002, 80(2):144-150.
|
[5] |
Wang C, Chi Y, Li J, et al.FAM3A activates PI3K p110alpha/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis[J]. Hepatology, 2014, 59(5): 1779-1790. DOI:10.1002/hep.26945.
|
[6] |
Yang J, Guan Y.Family with sequence similarity 3 gene family and nonalcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2013, 28(Suppl 1):105-111. DOI:10.1111/jgh.12033.
|
[7] |
Song Q, Gou WL, Zhang R.FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway[J]. Neurochem Int, 2016, 94(2):82-89. DOI:10.1016/j.neuint.2016.02.010.
|
[8] |
Song Q, Gou WL, Zhang R.FAM3A protects HT22 cells against hydrogen peroxide-induced oxidative stress through activation of PI3K/Akt but not MEK/ERK pathway[J]. Cell Physiol Biochem, 2015, 37(4):1431-1441. DOI:10.1159/000438512.
|
[9] |
Jia S, Chen Z, Li J, et al.FAM3A promotes vascular smooth muscle cell proliferation and migration and exacerbates neointima formation in rat artery after balloon injury[J]. J Mol Cell Cardiol, 2014, 74(5):173-182. DOI:10.1016/j.yjmcc.2014.05.011.
|
[10] |
Zhou Y, Jia S, Wang C, et al.FAM3A is a target gene of peroxisome proliferator-activated receptor gamma[J]. Biochim Biophys Acta, 2013, 1830(8): 4160-4170. DOI:10.1016/j.bbagen.2013.03.029.
|
[11] |
Giacco F, Brownlee M.Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9):1058-1070. DOI:10.1161/CIRCRESAHA.110.223545.
|
[12] |
Inoguchi T, Li P, Umeda F, et al.High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells[J]. Diabetes, 2000, 49(11):1939-1945.
|
[13] |
Hink U, Li H, Mollnau H, et al.Mechanisms underlying endothelial dysfunction in diabetes mellitus[J]. Circ Res, 2001, 88(2):E14-E22.
|
[14] |
Kim YK, Lee MS, Son SM, et al.Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes[J]. Diabetes, 2002, 51(2):522-527.
|
[15] |
Avery SV.Molecular targets of oxidative stress[J]. Biochem J, 2011, 434(2):201-210. DOI:10.1042/BJ20101695.
|
[16] |
Dai SH, Chen T, Wang YH, et al.Sirt3 protects cortical neurons against oxidative stress via regulating mitochondrial Ca2+ and mitochondrial biogenesis[J]. Int J Mol Sci, 2014, 15(8):14591-14609. DOI:10.3390/ijms150814591.
|
[17] |
Yao D, Brownlee M.Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands[J]. Diabetes, 2010, 59(1):249-255. DOI:10.2337/db09-0801.
|
[18] |
Thallas-Bonke V, Thorpe SR, Coughlan MT, et al.Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2):460-469. DOI:10.2337/db07-1119.
|
[19] |
Garcia SF, Virag L, Jagtap P, et al.Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation[J]. Nat Med, 2001, 7(1):108-113. DOI:10.1038/83241.
|
[20] |
Zhang Q, Deng Y, Lai W, et al.Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation[J]. Sci Rep, 2016, 6:30146. DOI:10.1038/srep30146.
|
[21] |
Duan F, Yu Y, Guan R, et al.Vitamin K2 induces mitochondria-related apoptosis in human bladder cancer cells via ROS and JNK/p38 MAPK signal pathways[J]. PLoS One, 2016, 11(8):e0161886. DOI:10.1371/journal.pone.0161886.
|
[22] |
Yin LM, Han XJ, Duan TT, et al.Decreased S100A9 expression promoted rat airway smooth muscle cell proliferation by stimulating ROS generation and inhibiting p38 MAPK[J]. Can Respir J, 2016, 2016:1462563. DOI:10.1155/2016/1462563.
|
[23] |
Jian KL, Zhang C, Shang ZC, et al.Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells[J]. Phytomedicine, 2017, 25(2):71-82. DOI:10.1016/j.phymed.2016.12.014.
|