Acta Academiae Medicinae Sinica

Acta Academiae Medicinae Sinica

Acta Academiae Medicinae Sinica ›› 2019, Vol. 41 ›› Issue (1): 21-27.doi: 10.3881/j.issn.1000-503X.10149

• Original Articles • Previous Articles     Next Articles

Effect of Low-frequency Pulsed Electromagnetic Fields on Bone Formation in Rat Osteoblasts and Its Mechanism

WANG Yuanyuan,XI Huirong,SHI Wengui,ZHOU Jian,CHEN Keming()   

  1. Institute of Orthopaedics,the 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army,Lanzhou 730050,China
  • Received:2017-11-08 Online:2019-02-28 Published:2019-03-06
  • Contact: Keming CHEN E-mail:chenkm@lut.cn
  • Supported by:
    Supported by the National Natural Sciences Foundation of China(81270963);Supported by the National Natural Sciences Foundation of China(81471090);Supported by the National Natural Sciences Foundation of China(81770879);the Natural Sciences Foundation of Gansu Province(1506RJZA307)

Abstract:

Objective To observe the effect of low-frequency pulsed electromagnetic fields(PEMFs) on bone formation in rat osteoblasts(ROBs) and explore the mechanism of action of the cyclic adenosine monophosphate(cAMP)/protein kinase A(PKA)/cyclic adenosine effect binding protein(CREB) signaling pathway.Methods The skulls of newborn Wistar rats were harvested,and the ROBs were obtained by multiple enzymatic digestion methods for subculture. After treatment with 50 Hz 0.6 mT PEMFs for 3,6,and 9 days,the alkaline phosphatase(ALP) concentration in ROBs was detected;after 0,15,30,60,90,and 120 min,the expression of bone formation-related factor(RUNX2),the protein expression of osteogenesis-associated transcription factor(OSX),the cAMP concentration,as well as the protein expressions of p-PKA,p-CREB,and CREB were detected. The p-CREB nuclear translocation was observed. After interference with IFT88 by RNA interference,the expressions of RUNX2,OSX,p-PKA,and p-CREB protein in ROBs were detected.Results After treatment with PEMFs for 3,6,and 9 days,the ALP activity values in ROBs were 24.356±4.911,37.688±2.151,and 39.922±5.486,respectively,which were significantly higher than 18.531±2.401(P=0.0121),33.675±4.366(P=0.0324),and 36.574±1.339(P=0.0134) in the control groups. RUNX2 and OSX activities in ROBs were significantly higher than untreated group after PEMFs treatment for 30(P=0.0042 and P=0.0058),60(P=0.0097 and P=0.0079),and 90 min(P=0.0083 and P=0.0098). After PEMFs treatment for 30(P=0.0012) and 60 min(P=0.0035),the cAMP concentrations in ROBs were significantly higher than that in untreated group. After PEMFs treatment for 15(P=0.0018),30(P=0.0087),90(P=0.0250),and 120 min(P=0.0350),the p-PKA levels in ROBs were significantly higher than that in the untreated group. After PEMFs treatment for 15(P=0.0075),30(P=0.0017),60(P=0.0074),and 90 min(P=0.0096),the level of p-CREB in the ROBs was significantly higher than in the untreated group. After PEMFs treatment of ROBs for 15 min,CREB phosphorylated and accumulated in the nuclei. PKA and p-PKA were co-localized with primary cilia and stained,and it was found that p-PKA was localized on the primary cilia. After the primary cilia was removed by RNA interference,the protein expression levels of p-PKA(F=78.602,P=0.0270),p-CREB(F=76.082,P=0.0089),RUNX2(F=41.064,P=0.0230) and OSX(F=57.524,P=0.0310) were significantly lower than those of the non-interfered group.Conclusion PEMFs promote bone formation in ROBs by activating the primary cilia-associated cAMP/PKA/CREB signaling pathway.

Key words: low-frequency pulsed electromagnetic fields, rat osteoblast, primary cilium, cyclic adenosine monophosphate, protein kinase A, cAMP response element-binding protein

CLC Number: